Increased fluxes of shelf-derived materials to the central Arctic Ocean

نویسندگان

  • Lauren E Kipp
  • Matthew A Charette
  • Willard S Moore
  • Paul B Henderson
  • Ignatius G Rigor
چکیده

Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from GEOTRACES

Continental shelves and shelf seas play a central role in the global carbon cycle. However, their importance with respect to trace element and isotope (TEI) inputs to ocean basins is less well understood. Here, we present major findings on shelf TEI biogeochemistry from the GEOTRACES programme as well as a proof of concept for a new method to estimate shelf TEI fluxes. The case studies focus on...

متن کامل

Diatom flux reflects water-mass conditions on the southern Northwind Abyssal Plain, Arctic Ocean

We studied time-series fluxes of diatom particles from 4 October 2010 to 18 September 2012 using bottomtethered moorings with two sediment traps deployed at 180 and 1300 m depths at Station NAP (75 N, 162W; 1975 m water depth) in the western Arctic Ocean. This paper discusses on the relationship of time-series diatom fluxes to satellite-based sea-ice motion and simulated hydrographic variations...

متن کامل

Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf grou...

متن کامل

Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 20032014

Arctic sea surface height (SSH) is poorly observed by radar altimeters due to the poor coverage of the polar oceans provided by conventional altimeter missions and because large areas are perpetually covered by sea ice, requiring specialized data processing. We utilize SSH estimates from both the icecovered and ice-free ocean to present monthly estimates of Arctic Dynamic Ocean Topography (DOT)...

متن کامل

Spatial Distribution of Methanesulphonic Acid in the Arctic Aerosol Collected during the Chinese Arctic Research Expedition

Methanesulphonic acid (MSA, mainly derived from marine biogenic emissions) has been frequently used to estimate the marine biogenic contribution. However, there are few reports on MSA over the Arctic Ocean, especially the central Arctic Ocean. Here, we analyzed MSA in aerosol samples collected over the ocean and seas during the Chinese Arctic Research Expedition (CHINARE 2012) using ion chromat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2018